Forces and Static Equilibrium

Objectives:-

1- To study forces in static equilibrium.
2- To find the force \mathbf{F}_{3} graphically.
3- To find the mass of unknown object by utilizing the force requirements of equilibrium and vector algebra.

Theory:-

Newton's First Law states that when a body is in equilibrium there can be no net force acting on an object, or in other words the vector sum of all the forces must be zero.

$$
\Sigma \mathrm{F}=0
$$

In a two-dimensional case, this vector equation is equivalent to two scalar equations:

$\Sigma F_{x}=0$	$\Sigma F_{y}=0$

so, if we have three forces as in figure the equilibrium conditions will be:
along the \boldsymbol{x}-direction along the \mathbf{y}-direction

$$
\begin{aligned}
& \mathrm{F}_{1} \cos \theta_{1}-\mathrm{F}_{2} \cos \theta_{2}=0 \\
& \mathrm{~F}_{1} \sin \theta_{1}+\mathrm{F}_{2} \sin \theta_{2}-\mathrm{F}_{3}=0
\end{aligned}
$$

Where,

$$
\mathrm{F}_{1}=\mathrm{m}_{1} \mathrm{~g} \quad \text { and } \quad \mathrm{F}_{2}=\mathrm{m}_{2} \mathrm{~g}
$$

Apparatus:-

Board	Cables
Dynamometer	masses
Small pulleys	

Procedure:-

1. Prepare the system. Make sure that the string is throwing the pulleys, 0 scale of the board is horizontal and reading of dynamometer is zero.
2. Put equal weights \mathbf{m}_{1} and \mathbf{m}_{2} in the hangers, these weights represent F_{1} and F_{2} where,

$$
F_{1}=m_{1} g \quad \text { and } \quad F_{2}=m_{2} g
$$

3. Move the dynamometer left and right until it becomes vertical which represent the equilibrium state.
4. By using the board find out the angles between \mathbf{F}_{1} and the positive \mathbf{x}-axis $\left(\boldsymbol{\theta}_{1}\right)$, and the angle between F_{2} and negative x-axis $\left(\boldsymbol{\theta}_{2}\right)$.
5. Record the dynamometer reading \mathbf{F}_{3} (experimental).
6. Choose a scale to represent the vectors \mathbf{F}_{1} and \mathbf{F}_{2}.
7. Draw \mathbf{F}_{1} and \mathbf{F}_{2} (by using the scale of diagram).
8. Measure the length of the line that represent the vector F_{3} by a ruler then use the diagram scale to find the magnitude of F_{3} graphically in Newton.
$F_{3}=\left(\right.$ length $F_{3} \times$ diagram scale)
9. Compare between \mathbf{F}_{3} experimental and graphical.
10. Repeat steps 1,2 and 3 for unknown mass.
11. Find the mass of unknown object by using the equilibrium conditions.
